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Abstract

Recently, Morsi has developed a complete syntax for the class of all
adjointness algebras (L; -;A; K;H). There, (L; -) is a partially ordered
set with top element 1, K is a conjunction on (L; -) for which 1 is a left
identity element, and the two implication-like binary operations A and H
on L are adjoints of K.

In this paper, we extend that formal system to one for the class ADJL
of all 9-tuples (L; -;1;0; A; K; H; ~;_), called adjointness lattices; in each
of which (L; -;1;0;”;_) is a bounded lattice, and (L; -;A; K;H) is an
adjointness algebra. We call it Propositional Calculus for Adjointness
Lattices, abbreviated AdjLPC. Our axiom scheme for AdjLP C features
four inference rules and thirteen axioms. We deduce enough theorems
and inferences in AdJLPC to establish its completeness for ADJL; by
means of a quotient-algebra structure (a Lindenbaum type of algebra).
We study two negation-like unary operations in an adjointness lattice,
de..ned by means of 0 together with A and H. We end by developing
complete syntax for all adjointness lattices whose implications are S-type
implications.

Keywords: Nonclassical logics; Syntax; Semantics; Adjointness; S-
type implications



1 Propositional Calculus under Adjointness

In this section, we review the essentials of adjointness algebras, as well as the
axioms, inference rules and main theorems of their complete syntax AdjP C [16].
We show how a complete syntax (with fewer axioms and inference rules) has been
developed in [16] for a syntax EP -AdjP C; with the smaller semantical domain
of all adjointness algebras whose implications satisfy the exchange principle.

1.1 Adjointness Algebras

The logic propositional calculus under adjointness, denoted by AdjP C, is based
on partially ordered sets (posets) (L; - ) whose elements are considered as truth
values. Each poset is required to possess a top element 1; called truth or va-
lidity. The logic features three binary operations A; K and H on (L; -). The
operation A, called an implication, should be antitone in the left argument and
monotone in the right argument, and should have 1 as a left identity element;
thatis A(1;z) =z 8z 2 L. The operation K, called a conjunction, should be
monotone in both arguments, and should also have 1 as a left identity element.
(K need neither be commutative nor be associative, and may have no right
identity element.) The operation H, called a forcing-implication, should be an-
titone in the left argument and monotone in the right argument, and should
satisfy: 8y;z2L: H(y;z) =1 iff y - z: (H need not have a left iden-
tity element.) The logic AdjPC ozers complete syntax (a formal system for
deriving theorems) for the semantical domain consisting of all the quintuples of
the following de..nition.

De..nition 1.1 [16] An adjointness algebra is a quintuple (L; -;A; K;H), in
which (L; -) is a poset with a top element, A is an implication on (L; -), K is
a conjunction on (L; -) and H is a forcing-implication on (L; -), subject to the
condition that A; K and H are mutually related, for all x;y;z in L, by
(Adjointness): 8x;y;z2L: vy - A(xz) iff K(xy) -z iff x-
H(y;2):
We denote the class of all adjointness algebras by ADJ.

The subject of a possibly noncommutative, nonassociative conjunction K
with two implication-like adjoints is an old one. See [2],[3].[4],[5],[6],[11],[19].
This idea lies also at the basis of that general trend in nonclassical logics col-
lectively termed since 1990 substructural logics. Those are surveyed in the book
[7], where one ..nds a detailed algebraic study of adjointness structures under
the name residuated partially ordered groupoids, and a representation theorem
for them is given in page 77 of [7]. See also Galois connections in [14]. The new
contribution of [16] is the development of a complete syntax for those structures
with weakest inference rules, in the general setting that 1 is a left identity, but
not necessarily a right identity, for K.

The following are six basic inequalities in (L; - ;A; K; H):

X-HMAX2);2) , x-HY;KXY) , y-AMHY2);2),

y - AXKKXY) , KXAKX?2) -z , KH(Y:2)y) -z



Lemma 1.1 [1] Let fx;g and fysg be two subfamilies in an adjointness algebra
(L; -; A; K; H) that have suprema in L, and let fz,g be a subfamily of L that
has an in..mum in L. Then

Vi il
A supxjiinfze = infA(xj;zd), ()
; i
T 1
K supxj;supys = SupK (Xj;Vs); )
Hj S g jis

H supys;infz; infA (Ys; Zo) : 3
s t sit

Also, if (L; -) has a bottom element 0, then

A@;00=1 and K (0;1) =K (1;0)=0:

Lemma 1.2 [18] Let (L; -) be a complete lattice. If an implication A on (L; -)
satis..es (1), then there exist unique K and H such that (L; -;A; K;H) is an
adjointness algebra. These are given by:

KXy)=inffz2L: y - A(x;2)9; xX;y2L;

H(y;z) =supfx2L: vy - A(X2)g; y;z2L:

Similarly, a unique adjointness algebra will be obtained once a K on (L; -)
that satis..es (2), or an H on (L; -) that satis..es (3), is given.

Lemma 1.2 demonstrates that adjointness algebras constitute a readily avail-
able framework for the study of implications and conjunctions related by adjoint-
ness. The special case that K is a supremum-preserving commutative triangular
norm, and A = H is its residuation implication, is well known.

1.2 Syntax: Axioms and Basic Theorems

The language of the propositional calculus under adjointness, AdjP C, features
three logical connectives (binary operations) on the set WF of formulae: im-
plication ), conjunction & and forcing-implication %. In an interpretation of
AdjPC, the three logical connectives ), & and % will translate to the three
operations A, K and H of some adjointness algebra, respectively. Lowercase
Greek letters are used as metavariables running on formulae in WF.

Axioms of AdjP C [16]:

P1: °¥%@®) °):

P2: ®¥%((®) °)¥%°):

P3: (@®% )D) )¥%°)%H®%°):

P4: T Y@ B®&):

P5: @) ( %°)&)¥%@®) °):

Pé6: (( %°)& )&t ¥ °&t:

P7: ®& %

An inference ®;¢t¢;®, ~ is understood as usual; and is carried out by
means of the four inference rules listed below. When ; =~ = (that is, is derived
from axioms alone), we write =, and we call ~ a theorem.



A considerable simpli..cation of notation is achieved [16] by using a new
symbol “%%”. We write ® %%  to abbreviate the writing of two formulae
®% and % ®. Thus, ® %% is a set of two formulae, and not one formula
composed from two subformulae. So, an inference j ~ ® %% s, in fact,
two inferences § ~ ® 3% and j ¥ ®. Likewise, a theorem ~ ® %¥;
is an abbreviated writing of two theorems. The meta-predicate ~ ® %% s
an equivalence relation on WF, called equivalidity [16]. Another equivalence
relation © on WF is de..ned by:

®" @ and " ®).

It follows from modus ponens, below, that if ~ ® %% then® ~ , but not
vice-versa.

This logic is too general. It may be that no ..nite set of axioms can complete
AdjP C if inference uses modus ponens (MP) alone! However, by adopting MP
and three bits of the substitution theorem as inference rules, the seven axioms
P1-P7 become complete for AdjPC.

Inference Rules of AdjPC [16]:

11=MP: ® ®% - (Modus Ponens for forcing-implication).

12: @Y% ~@®@%°)VY( %°) (substitution in left argument of
¥a).

13: ® %Y T ®&° V¥ &° (substitution in left argument of
&).

14: SV T (@) )L (@®)) °) (substitution in right argument
of ).

Proposition 1.1 [16] (transitivity of forcing-implication). ® % ; %° " ® %

Theorem 1.1 [16] (retexivity of forcing-implication). ~ ® % ®.

The above two results establish that the meta-predicate ~ ® % © is a pre-
order. In consequence, equivalidity is an equivalence relation on WF.

Proposition 1.2 [16] The following are correct inferences in AdjP C:
®% ~( %°)¥%@®%°):
T YT @Y% )N@®%°):
®% ~( DN)%LO®)°):
YT @) )Y@ °):
®¥% "~ B®&° Y &°:

Y T ®& Ya®&°:
® T (@®)°)¥n-e:
°cT®) °:

®®) ° " °

® " LUB& :

® "~ B®&:
®& "

Y \®374(_374°)Z



Theorem 1.2 [16] The following are theorems in AdjPC:
T®Y( Ya®&):
T HO)& Ve
TR&@® D) °) e
% %) D %)

Proposition 1.3 [16] (Adjointness): T % ®)°) T R& W T ® Y
(_ Ya °) .

This corresponds to the condition (Adjointness) in the de..nition of adjoint-
ness algebras (De..nition 1.1).

AdjP C does not have a deduction theorem as strong as that of classical
logic. For instance, the inference ~ % ° ~ (® ) ) % (® ) °) is correct, but
the formula ( %2°) % (® D) )% (® D °)) is not a theorem in AdjPC. It
is equivalent to the exchange principle for the implication ) (Conclusion 1.2,
below). However, the following important theorem holds in AdjPC.

Conclusion 1.1 [16]. Let ® be a theorem, and let _ be any formula in WF.
Then ~ _ % ®. In particular, ® and _ will be equivalid if and only if _ is also
a theorem.

1.3 Semantics

An interpretation of AdjP C is [16] a pair A = (L;%), inwhichL = (L; -; A;K; H)
is an adjointness algebra, and % : WF ¥ L is called the valuation function
of the interpretation; subject to the condition that the following three identities
hold for all formulae ®; ; °:

(@ °)=A:(®);%(%));

h(@& ) =K (@);%()));

W ¥)=H(C);%()):

If %1(®) =1, we say that ® is true in A, and we write A 2 ®. Given a set j
inWF,if A2 _forall , 2 i, wewrite A2 j. If AZ2xforeveryinterpretation
A such that A2 j, we write j 2+. If A2® for all interpretations A, we say
® is universally valid (or, a tautology), and we write 2 ®.

Semantics-Theorem 1.1[16] Suppose j ~ ® for some set of formulae
i [f®y. Then j 2 ®. Consequently, AdjP C is sound for its semantics, in the
sense that if ~® then 2®.

Semantics-Theorem 1.2[16] AdjPC is complete for ADJ; in the sense
that its theorems are its universally valid formulae.

Corollary 1.1 [16] Two formulae ®;  will be equivalid if and only if % (®) =
Yo () in all interpretations (L;%).

The converse of Semantics-Theorem 1.1 fails. For instance, we have ° 2
"~ % °, but the inference © =~ 3. ° is incorrect [16]. However, that converse
holds if all formulae in j are equational; that is, they take the form ~— 3. ° [16].



1.4 The Exchange Principle

An implication A is said to satisfy the exchange principle [22] if it satis...es:

EP: 8;y;z2L: AMGA(WY;z)) =Al;A(X2)):

Morsi [16] has developed a complete syntax for the smaller semantical do-
main EP-ADJ of all adjointness algebras whose implications satisfy EP. He
called it propositional calculus under adjointness and exchange principle, de-
noted EP-AdjPC. Its language is the same as that of AdjPC. A preliminary
choice of the axioms of EP-AdjP C would be to augment the seven axioms of
AdjPC with:

EP: @>C I N%C D@D °):

And we may retain 11-14 as four inference rules for EP-AdjPC. Then EP-
AdjP C would become sound and complete for EP-ADJ. However, it is possible
to extract a smaller axiom scheme for EP -AdjP C; in the manner shown below.

Conclusion 1.2 [16]. The following eight schema of equational formulae are
equivalent in AdjPC:

E1=EP: @®D> ( D>°)N%( D> ®D °) (exchange principle for ).

E2: ,&@®D)°)¥%@®) ,&°):

E3: ®&(,&°)¥% & (®&°) (exchange principle for &).

E4: ( %°)% (®& ¥ ®&°):

E5: ( %(®) °) % (@& ¥%°):

E6: (t%°)& ¥%(( %z1) D) °):

E7: ®& %°)%( %@ °)):

E8: ( %°)%(@®) )% ®D °):

It follows from this conclusion that P1-P7 and E1-E8 are theorems of EP -
AdiPC. A new axiom scheme for EP-AdjPC has been chosen from among
these ..fteen theorems.

Axioms of EP-AdjPC [16]:

PlL: °3%@®) °):

P2: ®%(®D °)¥%°):

P3: (®% ) )%°)%®%°):

P6: (( %°)& )&t ¥ °&t:

E5: ( %(@®)°)%@®& ¥%°):

E7: ®& %°)¥%( ¥%(@®)) °)):

Inference Rules of EP-AdjPC [16]: MP, 12 and 13.

The formal system built upon these six axioms and three inference rules is
sound and complete for EP-ADJ [16].

2 Adjointness Lattices
De..nition 2.1 An adjointness lattice is a 9-tuple (L; -;1;0; A; K;H;”; ), in

which (L; -;1;0;7;_) is abounded lattice, and (L; - ; A; K; H) is an adjointness
algebra. We denote the class of all adjointness lattices by ADJL.



We aim to develop a complete syntax for the semantical domain ADJL. We
call it propositional calculus for adjointness lattices, and denote it by AdjLPC.
We select the axioms for AdjLP C from among the many inequalities derived
algebraically in ADJL. Since the logic AdjLP C is an extension of AdjP C, the
seven axioms of AdjP C can be adopted, and we choose six new axioms, namely,
the following universally valid inequalities in ADJL:

M8: x~y - x_z:

M9: Xx_Xx - x

M10: H(y;z) - HX_Yy;z_X):

M11l: X - X~ x:

M12: H(y;z) - HXNyY;z ™M X):

M13: 0 - x:

In forms free from -, these relations become: for all x;y;z in L:

N8: HX"Ny;x_z)=1:

N9: HXX_x;x)=1

N10: HMH(y;z2);HX_vy;z_x))=1:

N11: H(Xx"x)=1:

N12: HMH(y;2);HX y;z~x)) =1:

N13: H(0;x) =1:

3 Syntax: Language, Axioms and Inference Rules

The language of the Propositional Calculus for Adjointness Lattices, AdjLPC,
consists of a denumerable set WF of formulae and ..ve logical connectives (bi-
nary operations) on WF: implication ), conjunction &, forcing-implication ¥4,
weak conjunction ~ and disjunction _. The set WF is constructed from a de-
numerable subset W Fq of atomic formulae by means of repeated application of
the logical connectives. We also add to W Fq a special element ? called Falsum.
We denote P1 by > (Truth). As usual, brackets and comma are secondary
symbols in the language.

To reduce the number of brackets appearing in complex formulae, we main-
tain a convention of priority among the eight operation symbols ) ; &; ¥; %%
P TN . We give &;7; the highest priority; whereas we give ~; " lower
priority than the other symbols.

In Section 2, we identi..ed six identities N8-N13 (equivalently, six inequali-
ties M8-M13) valid in all adjointness lattices. Their corresponding statements
on formulae, together with the seven axioms P1-P7 of AdjP C, are what follows:

Axioms of AdjLPC: The following are theorems:

P1: °¥% @) °):

P2: ®¥%((®)°)¥%°):

P3: (®% )D) )¥%°)%H®%°):

P4: IR ACH XCIADE

P5: @®)( %°)&)¥%@®) °):

Pé6: (( %°)& )&t ¥ °&t:

P7: ®& %



P8: N %U®_°:

Pa: °_°¥-e:

P10: ( %°)%@®_ %°_0®):

P11: 7

P12: ( %°)%H@®N %°"®):

P13: ? Y%

Inference Rules for AdjLP C are those of AdjJPC: MP, 12, 13 and 4.

In an interpretation of AdjLP C, the ..ve logical connectives ) ; &; ¥%; ™ and
_will translate onto the ..ve operations A; K;H;” and _ of some adjointness
lattice, respectively, whereas Falsum 2 will translate onto 0. Also, formulae will
translate onto functions on truth values; built up as composites of A; K; H; ™,
and 0. AdjLP C will be sound for these semantics, in the sense that all theorems
will translate onto functions that are identically equal to 1.

4 Syntax: Essential Theorems

We derive enough theorems and inferences (called propositions) in AdjLPC to
establish, in Section 5, its completeness for the semantical domain ADJL of
adjointness lattices. In most proofs we shall use, as matters of course, both MP
and the retexivity and transitivity of the binary relation ~ 3. °.

Theorem 4.1 " ®3%® ° and ~®@" 3%®:

Proof. Use P8 with &, then P11 to derive ~ ® % ® _ °. The other part
follows similarly. m

Theorem 4.2 (idempotent laws for disjunction and for weak conjunction).
Te ey and TN WY

Proof. Apply Theorem 4.1, P9 and P11. =

Theorem 4.3 (commutative laws for disjunction and for weak conjunction).
T®_ Y% _® and TN V%Y N®:
Proof. By P10, ~( % )% @®_ % _®). So,by = 3% and MP
we infer the ..rst part. The second part follows similarly. m

Theorem 4.4 =~ ( %°) % ®_ %®_°); ~ ( %°) % ( _®%°_0),
T %)@ %e_°),  ( )% ( _®¥%°_0®):

Proof. These follow clearly from P10, P12 and commutivity (Theorem
43).m

Applying MP on the preceding theorem, we obtain

Proposition 4.1 (monotonicity). — %° ~
fo_ %®_°, _®%°_®,®0_ ¥%®_°, _0®%°_0g:



Proposition 4.2 (Substitution Theorem). ® %% -~ &(®) %% 2( |®):
Where &(®) is a formula in which ® occurs as a subformula, and & ( j®)

is a formula obtained from & (®) by substituting ~ for ®, in one or more of the

occurrences of ® of in & (®). In particular, substitution preserves equivalidity.

Proof. This follows clearly from all the monotonicity propositions of the
..ve logical connectives );&;%;~and _. m

Theorem 4.5 ~ ( %°)%¥%( _°%°):

Proof. (1) ( %°)%( _°%°_°) (Theorem 4.4)

@ ( %)% (C _°%°) (1), Theorem 4.2, Substitution Theorem )
(3 % _° (Theorem 4.1)

@ ( _°%°)%( %°) ((3), Proposition 1.2). m

Theorem 4.6 ~ ( %°) %% ( % ~°):
Proof. Similar. m
Proposition 4.3 @ %% ®"~ ~®_ %Y T ®¥%
Proof. Follows by Theorem 4.5 and by Theorem 4.1. m
Proposition 4.4 f° % ®;°% g~ °%e®"N

Proof. (1) °~ % ®~” (.rst hypothesis, Proposition 4.1)
(2) °3%°~ (second hypothesis, Proposition 4.3)
@) °%ne~ (1), ).

The opposite inference follows from Theorem 4.1. =
Proposition 4.5 f® 3% °; %°g~ ®_ % °:

Proof. Similar. m
Theorem 4.7 "®@"~"@®_ )¥%%® and ~®_ (@™ ) ¥%%uEe:

Proof. Use Theorem 4.1 together with Proposition 4.3. =

5 Semantics

We explain how ADJL (cf. Section 2) constitutes a semantical domain for
AdiLPC. We prove that the syntax of AdJLPC is sound for ADJL. We
then show that the quotient of the tuple (WF; ™ ¢ 3%¢;>;?; ) ; &;%;7;_), with
respect to the relation equivalidity, is a model of AdjLPC. We use it to prove
completeness.

An interpretation of AdjLPC is a pair T = (L;%), in which

L=(L - LA KH;™ )



is an adjointness lattice, and % is a function from the set WF of formulae
into L, called the valuation function (or truth function) of the interpretation,
subject to the condition that the following six identities hold for all formulae

®; ;°:

h@®D°) = AF(®);%(%); ©)
h@& ) = KE®);%()); ®
A %) = HEC):HE); (6
hC ) = ROINMGC); ™
hC_°) = %RO)_%(C); ®

“w@) = o (©)]

%4 (®) 2 L (also denoted by ®) is called the validity (or, truth) of ® in this
interpretation. The symbol 2 is understood as in AdjP C (Subsection 1.3).

Semantics-Theorem 5.1. AdjLP C is sound for its semantics, in the sense
that if ~ ® then 2 ®; that is, all theorems are universally valid.

Proof. By the identities N8-N13, we know that the axioms P8-P13 are
universally valid in ADJL. Also, AdJLPC has the same inference rules as
AdjPC. We can therefore imitate the proof in [16] of Semantics-Theorem 1.1,
and deduce that AdjLPC is sound for ADJL. =

We next address the question of the completeness of AdjLPC for ADJL.
We follow a standard procedure due to Lindenbaum and Tarski. We begin by
constructing the natural interpretation of AdjJLPC. Denote the equivalence
relation equivalidity (on WF) simply by ~. Let p: WF * WF=~:@ A2 ®
be the quotient map. Then a partial order - is well-de.ned on WF=~ by:
® - * i ~®% . By imitating for AdjLPC the proof in [16] of Conclusion
1.1, we ..nd that the poset (WF=~; -) has a top element which is precisely
the set of all theorems in AdjLPC. We denote this top element by 1. Also
by P13, the poset (WF=~; -) has a bottom element which is precisely the
equivalence class of Falsum ?. We denote this bottom element by 0. Moreover,
the Substitution Theorem guarantees that the ..ve logical connectives ) ; &; ¥; ™
and _ possess the substitution property for ~. In consequence, the following
..ve binary operations A; K; H;#; ~ are well de..ned on WF=~. For all ®*: e
in WF=~

A(®; E:h)¢: pP@®D °),

R. &7, =p(®&),

% e =pC %),

as=p( A0y,

~t=p(C _°).
From [16], we know that (WF=~; -;A;K;H) is an adjointness algebra.
Hence, we need only prove that (WF=~; -;1;0;#; ~) is a bounded lattice. But,

this follows in a routine way from the axioms and from the theorems and
propositions of Section 4. This completes the proof that = = (WF=~; -
1,0, K H;»; ~) s an adjointness lattice. Finally, by their construction,

10



A;K;H;~; ~;0 and p satisfy the conditions (4)+49) fer p to become a valua-
tion function. This demonstrates that the pair L;p is an interpretation of
AdILPC. It is called the natural inteypretation of AdjLPC.

Since, for any formula ®, we have L;p 2 ® (thatis, ® is the top element of
(WF=~; -))if and only if ® is a theorem, then in the light of Semantics-Theorem
5.1 we obtain:

Semantics-Theorem 5.2. AdjLP C is complete for ADLJ; in the sense
that its theorems are its universally valid formulae (that is, ~ ® if and only if
2 @, for all formulae ®).

Semantics-Theorem 5.3. Let j be a nonempty set of equational formulae.
Then for any formula ® in WF, ifand only if § ~ ® if and only if j 2@®.

Proof. Adjoin j to the set of axioms, then repeat all the arguments above.

[

Along the same lines of Subsection 1.4, we also possess a complete syntax for
the semantical domain EP-ADJL of all adjointness lattices whose implications
satisfy EP. We call it propositional calculus for adjointness lattices and exchange
principle, and we denote it by EP-AdjLPC. The language of EP-AdjLP C is
the same as that of AdJLPC. Our axiom scheme for EP-AdjLP C features
three inference rules and twelve axioms. The inference rules and the ..rst six
axioms are those of EP-AdjPC, whereas the last six axioms P8-P13 are as
in AdjLP C. From Subsection 1.4 and this section, EP-AdjLP C is sound and
complete for EP-ADJL.

6 Syntax: Additional Theorems
In this section we prove further useful theorems and inferences in AdjLPC.
Theorem 6.1 ~ ®&? Y% ?:
Proof. By P7 and P13. m
Theorem 6.2 ~ ?&® %%, ?:

Proof. By P13, ? % (® ¥ ?), which gives by (Adjointness), ?&® % 2.
This and P13 yield the stated equivalidity. m

Theorem 6.3 ~ ?27"®@%%7?,  ?2_0®¥V%4U®, " >"®LULUE, >_@%¥>:
Proof. These follow clearly from P13 and Proposition 4.3. m
Theorem 6.4 = ? D) ®: In particular, =~ ? ) 2.

Proof. By P13, ? % (> % ?), from which we get by (Adjointness), > %
(?)®).Soby MP, ?D) ®: m

Theorem 6.5 ~(@® ) "°)%%U@®) )N®)) °):

11



Proof. That ~ ®) ~°)% @®) )™ (@® ) °) follows from Theorem
4.1 and Propositions 1.2, 4.4. The other half is proved as follows:

@ @) )M®)°)¥%(®D> ) (Theorem 4.1)

@ @®) Y®)°)¥%(@®) °) (Theorem 4.1)

@) ®&(@®) Y™M®) °)¥%  ((1), Adjointness)

@) ®&(@®) YN®) °)) %  ((2), Adjointness)

B) B&(@®D) )Y™M®D) °)N¥ ~°  ((3), (4), Proposition 4.4)

® @®) )XN®D°)%H@®) ~°) ((5), Adjointness). m

Theorem 6.6 ~(®_ D °)B%U@D )N D °):

Proof. That ~ (®_ D> °) % (®) °)~( D) °) follows from Theorem
4.1 and Propositions 1.2, 4.4. The other half is proved as follows:

@O @)™ D>°)¥%(@®) °) (Theorem 4.1)

@ @)™ D)% D> *°) (Theorem 4.1)

B) @%@ )N D)%) (1), Adjointness)

@ %@ °)™NC D> °)¥%°)  ((2), Adjointness)

G)® @) )NC D)%)  ((3), (4), Proposition 4.5)

® @)™ C D)¥®_ D> °) ((5), Adjointness). m

The next two theorems have proofs along lines similar to the above two.
Theorem 6.7 ~ (®3% "°) %% @®% )N@®%°):
Theorem 6.8 ~ (®_ %°) %L @%°)N( %°):
Theorem 6.9 ~ ®&( _°) %% (®& ) _ (®&°):

Proof. That (®& ) (®&°) % ®& ( _ °) follows from Theorem 4.1 and
Propositions 1.2, 4.5. The other half is proved as follows:

1) ®& % (®& )_(®&°) (Theorem 4.1)

(2) ®&° % (®& ) _ (®&°) (Theorem 4.1)

B L®) @®& )_(®&°)) ((1), Adjointness)

@) °%@®) ®& )_(®&°)) ((2), Adjointness)

B) _°%@®) @®&)_(®&°)) ((3), (4), Proposition 4.5)
6) ®&( _°)¥%(®& ) _(®&°) ((5), Adjointness). m

Theorem 6.10 ~ (® _ ) &° %% (®&°) _( &°):
Proof. Similar. =

Proposition 6.1 (® _ ) Yao T f®YaC; Ve, Y9 ®_( _.) %"

Proof. These equivalences follow easily from Proposition 4.5. =
Proposition 6.2 °% @~ )N, " fuU®°% ;°% . g~ °HeN(C N)):

Proof. These equivalences follow easily from Proposition 4.4. =

12



Theorem 6.11 ~(®_ ") _ . »%® _( _.):
Proof. Apply Proposition 6.1 twice, with 2&=(—==) and with &—2— =
Theorem 6.12 ~ @), B%UN( M)

Proof. Similar, using Proposition 6.2. m

Using the monotoicity properties of ) ;¥%; & (Proposition 1.2), it is easy to
conclude

Theorem 6.13 ~ @) )_@®D> )% @®) _°);
C@>°)_(CDN)%H@™ D),
T@®% )_®%°)Va@®% _°);
T@®%C)_( V)N (@®N W),
T@®N )& VA (@®&°)N(&°):
TR&( N°)Ya(®& )N (®&C):

Theorem 6.14 ~ (> ) ®) %% ® and ~® ) >.

Proof. Use Proposition 1.2, > and MP. =

7 Negations from Implications

A negation n on (L; - 1;0) is an order-reversing map that satis..es, n(0) = 1
and n(1) = 0, and it is a strong negation if it is also an involution; that is,
n(n(x)) = x for all x [21].

In an adjointness lattice, we de..ne two functionsn;m:L ¥ L by:

nx) = A(x;0); (10)
m(y) = H(y;0): (11)
It is easy to see that n is a negation on (L; -), whereas m may lack the
property m(1) = 0. In the syntax of AdjLPC, the corresponding two unary
operations :;# on WF are de..ned on a formula ® by:
®=0)? ,H# = %7
We have the following properties for - and #.

Proposition 7.1 ®% ~ : % :® and ®3% ~ # ¥ H#E:

Proof. Use Proposition 1.2. m

It follows clearly from the preceding proposition that the Substitution The-
orem remains valid for complex formulae that may feature one or both of the
two unary operations :;#.

Proposition 7.2 % :® 7 ®& %347~ ®@%#H
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Proof. Use (Adjointness) and P13. m
Theorem 7.1 ~ :>W¥3%4? |, ~ :?2%%> and =~ ::>%%>:

Proof. The ..rst equivalidity follows from Theorem 6.14, and the second one
from Theorem 6.4. The third one is a consequence of the ..rst and the second. m

We see from Proposition 7.1 and Theorem 7.1 that : is a negation function.
Theorem 7.2 ~ #7? %% >:
Proof. Direct from Theorem 1.1 and Conclusion 1.1. =
Theorem 7.3 ~ z(®_ ) %% @~ : and ~#@_ ) VLHINH .
Proof. Direct from Theorems 6.6, 6.8. m
Theorem 7.4 ~®¥%#:® and ~ % :# :
Proof. Direct from P2 and Theorem 1.2. m
Theorem 7.5 ~®&:®%%? and ~# & %% 72
Proof. Direct from Theorem 1.2 and P13. m
Theorem 7.6 ~ #:# Y%%# and ~ #:@ %% =@:

Proof. By Theorem 6 of [16], ((( % 7?) D) ?) % ?) %% ( % ?), which
is the ..rst equivalidity. We get the second equivalidity from Theorem 7 of [16].

]
It follows from Theorem 7.6 that the two unary operations -# and #: are
idempotent, up to equivalidity.

Theorem 7.7 ~# % ( %°) , ~ 0% ®)°) , ~®%(:0%°)
and T~ ¥%#H D) °):

Proof. Direct from Proposition 1.2 and P13. =

Proposition 7.3 ®3% ::®@ 7 :®%#® and @ % HH® = #® ¥ :®:
Proof. By Adjointness. m

Proposition 7.4 - :®@ %% @® = (#® LY ®:
Proof. (1) :#::®%% :#® (hypothesis, Substitution Theorem)
(2) :#::@%% -:® (Theorem 7.6)
() :#®Y¥ - :® %% ® (hypothesis, (1), (2)). =

Proposition 7.5 ##® %% ® ~ #:® %% ®:
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Proof. Similar. m
Proposition 7.6 # ~(®) )% :® and # ~ (®% ) Y% #®:
Proof. Direct from Proposition 1.2. m

With the help of the preceding proposition, it is easy to deduce the following
Modus Tollens schema.

Proposition 7.7 ® ) ;# ~ :®;

®% #H ~ HB®
®% ;I T :I@;
®%H ;| T @
®% 1 ; T H#®:

Conclusion 7.1 The following ..ve schema of formulae are equivalent in AdjLP C:
N1: :-® % #®.

N2: ®3% ::®.
N3: #® % :®.
N4: ® ¥ H#H#®.

NS: ® %% #®.

Proof. The equivalences N1 = N2 and N3 = N4 follow from Proposition
7.3.

N2 entails N3: By Theorem 7.4, ® % :-#®, and so by Proposition 7.1,
I I#H® Y z®. But by N2 with ?, #® % - - #®. Consequently, #® % -®.

N4 entails N1: Similar.

Finally, N5 is the conjunction of N1 and N3. m

It is clear from the above conclusion that n need not equal m (see the next
example), and equality will hold if and only if for all x, x - n(n(x)).

Example 7.1, pe..ne a conjunction K on [0; 1] by:
o — : 2x+y -1,

Ky) = min fX;yg; 2X+y=>1"

This K is an associative conjunction with two-sided identity, but it is neither
commutative nor continuous. It is direct to see that its implication triple is
completed as fgJlows:

ey — L

A(X’Z)_l/z max fl j 2x;z9; X>7

Coy — ; y-z,
Hy:2) = max f(1 i y)=2;z9; y>z "'
which are not comparable. For this adjointness lattice, we ..nd:

X -7 .

_ oy — L Xx=0
n() =Ax0) = 1y, maxfl j 2x;0g; x>0 "
1; -z
MY =HO= o g

So, n & m. Also, we note that each of the two inequalities x - n(n(x)) and
X - m(m(x)) fails for some x.
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8 S-type Implications

In this ..nal section, we consider a type of implications that has seen su¢cient
interest in the literature. Given a strong negation n and a triangular norm T
on (L; -), the S-type implication of T and n is de..ned on (L; -) by:

A y) = n(T (X n(y))); (12)

For simplicity of terminology, we shall say that an adjointness lattice is of the
S-type if so its implication A is. (N.B. It is direct to verify that if A is given by
(12), then H will be the n-contrapositive of the residuated implication Jt of T,
whereas K will be given by K (y) =n@Qr (x;n(y))); x;y2L.)

Our aim is to prove that adjoining to EP-AdjLPC one extra “involution”
axiom (for the negation :) renders the implication ) an S-type implication.
We denote the ensuing syntax by S-AdjLP C. Its language is that of AdjLPC.
It is well known that in an adjointness lattice of the S-type, A satis..es EP and
n is involutive (see [18]). Therefore, the following axioms and inference rules
are sound for those lattices:

Axioms of S-AdjLPC:

Pl1: °3%@®)) °):

P2: ®%(@®) °)%°):

P3: (0% ) )%°)%®%°):

P6: (( %°)& )&t ¥ °&t:

E5: ( %(@®)°)%@®& ¥%°):

E7: ®& %°)¥%( ¥%(@®)) °)):

P8: ®™ %L®_°:

P9: °_ °¥-°:

P10: ( %°)%(@®_ %°_®):
P11: 3% N

P12: ( %°)%(@"N %°"®):
P13: ?3%°:

IN: ®¥%% ::®.

Inference Rules of S-AdjLPC: MP, 12 and I3.

The remaining arguments of this section are carried out within S-AdjLPC,
whereby inferencing from its axioms will be denoted by ~s. Recall that S-
AdjLP C is just EP-Adj LP C with the involution axiom IN added. Accordingly,
we are entitled to use all theorems and established inferences of EP-AdjLPC.

In terms of - and ), we de..ne the following, new logical connective o :

®a =:®) :): (13)
We call it in S-AdjLP C the tie conjunction on WF.

Proposition 8.1 (monotonicity of @).
®¥% " f®u°¥, wo° °o®¥%°n @:

Proof. Clear, from the monotonicity propertiesof - and ). =
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Theorem 8.1 (commutivity of ). “s®n %3 o@:

Proof. This is just the following equivalidity from EP and Substitution
Theorem:

= CI NEE/A) K275 G X CEZA) N |
Theorem 8.2 (exchange principle for ). “s®&o( 8°) %3 o(@&n°):

Proof. ®a( 8°) = z@®) ::z:( D :z°) %% @D ( D =) (by
QN()) l/23/;:(_) @D :=°) (by (EP) %% (" D ::(®D 7)) (by (IN)) =
a(®a°): m

Theorem 8.3 (associativity of ©). “g®o( 8°)%¥% (@0 )o°:
Proof. This is a routine consequence of the preceding two theorems. m
Theorem 8.4 (identity element). “s®o>%¥%® and ~s>o0@®%%®

Proof. ®a>=:(@®) z=>)%¥%:(@® ) ?)=::0%%® (by (IN)).
Also, >a®=:(>) @) %% ::0%%®; by (IN).m

It follows from Proposition 8.1 and Theorems 8.1-8.4 that the tie conjunction
o is a triangular norm. Also we know that : is a negation, and so by IN, : is
a strong negation.

Now, from IN we have

@®) Y¥%h:::@®) 2 )=:@®o:);

that is, ) is the S-type implication of these & and -. This completes the
proof that S-AdjLP C is a sound and complete syntax for the semantical domain
of all adjointness lattices of the S-type.

We next study some essential features of S-type implications. The next
theorem states that they satisfy self-contraposition.

Theorem 85 s (®) :°) %% (° D) :®);
s (@) °) ¥ (:° ) 10),
s (¥ :®) WY (B& ),
Ts 1@ V¥ H#®.

Proof. The ..rst equivalidity holds by EP. The second equivalidity follows
from the ..rst one and IN. The third equivalidity is just a restatement of axioms
E5 and E7 with © = 2. The fourth holds by IN and Conclusion 7.1. m

Proposition 8.2 % :® "s®% : and ®& %¥%7? s &B VI ?:

Proof. The ..rst equivalence follows from Proposition 7.2 and ~g = ® Y% #®
(Theorem 8.5). The second equivalence follows from the ..rst one and Proposi-
tion 7.2. m

Proposition 8.3 ® %%  “g :®@ WY -
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Proof. This follows directly from Proposition 7.1 and IN. m

The next theorem justi..es the terminology “tie conjunction” for a. For a
general study of such conjunctions in adjointness algebras, see [1].

Theorem 8.6

s @D (DN V(@2 D °); (14

s B&(T&°) oY (R T) &S (15)

Proof. We have the following equivalidities; by IN and the associativity of

@Y D°)NYYH:=:®e:( D»°)¥M:(@®oz:( 8z°) %

:@®o( 8:°) %YM - ((®a )oz°) Y (@a D) °).

This proves (14).

By repeated application of (Adjointness), we obtain the following equiva-
lences:

A& (&) %zt s & %@®DI1) s°%U( D@ 1) "s°%H( @)1 s
(2®)&° %zt (by (14)) .

So by commutivity of @ (Theorem 8.1) we get the equivalence ®& ( &°) ¥
t 7 (®o )&° Yt

Now, (15) ensues from applying this equivalence twice; once with M,
and again with &2J&° g

We next study the exects of adjoining to S-AdjLP C the following commu-
tivity axiom for &:
COM: ®& ¥% &®:

Proposition 8.4

COM s (® °) %% (® % °); (16)

COM "5 @& %% ®u (17

Proof. We have the equivalences:

T H®)°) s ®& ¥%° (Adjointness) Ts &® ¥4 ° (COM).

So by (Adjointness), % (@® ) °) s ¥ (®¥%°).

By applying this last equivalence, once with £2° and again with £%2, we
get (16).

Next, assuming COM, we get the following equivalidities in S-AdjLP C:

®ao %Y o® (Theorem 8.1) = :( D) :®) %% = ( % z®) (by(16)) %%
22 (®& ) (Theorem 8.5) %% ®& (IN). This renders (17). m

The preceding proposition means that in S-AdjLP C enriched by COM,

the implication ) is indistinguishable from the forcing implication %, and the
conjunction & is indistinguishable from the triangular norm a. Thus, COM
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provides a complete characterization of an S-type implication ), of some tri-
angular norm g, that is simultaneously the residuated implication of that o.

We remark that in residuated logic we have another complete characteriza-
tion of such implications. They are those residuated implications (of triangular
norms) that satisfy IN. For an algebraic proof, see [18].
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